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Abstract 

The Linux kernel supports offloading of networking 
functions such as bridging and routing to switches (and 
NICs). These offloads occupy hardware resources that are 
difficult to track for the kernel as their representations can 
differ from kernel resources. In addition, hardware resources 
must be often traded off against each other if they are stored 
in the same shared memory. 
Failure to offload a kernel resource, e.g., a routing entry, 
installed in the kernel puts the kernel and hardware device 
out of sync which can result in incorrect behavior, e.g., 
blackholed packets. Reverting to a software implementation 
is not always possible, especially if line rate processing of 
packets is a hard requirement of the network environment. 
This paper presents the challenges of resource management 
involved in network function acceleration. We present 
models to manage complex resources offloads where 
kernel/hardware representation do not match. Resource 
availability is checked synchronously on the offload path to 
predict with a high degree of confidence that an offload will 
succeed while also providing synchronous feedback to 
users, e.g., routing daemons. 
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Introduction 
The Linux kernel supports accelerating network functions 
by offloading to hardware. Typically, stateless decisions are 
offloaded, and more recently enhancements like FDB 
offload, FIB offload and eBPF offload support have been 
added. The situation however gets a little more complicated 
when offloading functions that affect multiple interfaces and 
need to be optimized and managed across these multiple 
interfaces. Further complications arise from mismatch in the 
view of resources between the kernel and hardware/driver. 
When offloaded to hardware, a single kernel resource may 
occupy more than one hardware resource: e.g. routing 
prefixes which are a complete entry in the kernel might be 
stored in TCAM while next-hops could be stored in a hash-
based memory. 
 
One important implementation challenge of hardware 
offloading is to keep the kernel state in sync with hardware 
when a network function cannot be offloaded due to lack of 
hardware resources. Let us consider the L3 routing case and 
how hardware offload failures can cause catastrophic 
problems. Failure to indicate a hardware offload error to a 
routing daemon, will result in the routing daemon 
advertising reachability of the failed prefix, which will 
result in peer routers sending traffic towards it, which will 
then get blackholed. The device driver may try to remedy 

the situation by disabling offloading and revert to software 
forwarding but this solution is not always practical and can 
actually even be harmful if forwarding packets at line rate is 
a strict requirement of the network infrastructure. A data 
center switch such as the Mellanox Spectrum ASIC can 
forward packets at 6.4Tb/s while software forwarding on the 
same ASIC delivers around 4Gb/s [1]. With such a mismatch 
in speeds many packets will be lost as the CPU cannot 
handle line rate traffic. 
 
As said previously, hardware offloading failures can also 
result in incorrect route advertisements and potentially 
blackholing of traffic. Consider the network topology shown 
on Figure 1 with 3 routers and a Switch ASIC (DUT) acting 
as an additional router. All routers running BGP. Suppose 
the hardware FIB on the switch has a default route, e.g., 
0.0.0.0/0, for packets and a new route, 13.0.0.0/24, is 
installed but its offloading fails without notifying the kernel 
or the routing daemon (assume no fallback to software 
forwarding). Packets for 13.0.0.0/24 will still be forwarded 
in hardware but will take the default route instead of the 
proper next-hop which will result in incorrect routing and 
blackholed packets. Details about this experiment can be 
found on github [9]. 
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Hardware implementation can differ drastically from the 
software implementation both in terms of processing and 
resource management. For example, IPv6/64 and IPv6/128 
prefixes (routes with a /64 mask versus a /128 mask) 
typically use different hardware entries while the kernel 
does not distinguish between them. Hardware representation 
mismatches make it harder for the kernel to keep a precise 
and simple accounting of hardware resource occupancy.  
This is further complicated as different kernel resources can 
be mapped to the same shared hardware resources: e.g., if 
both routes and neighbor entries use the same shared 
memory on a device then adding more routes can decrease 
the number of available neighbor entries. This leads to 
problems where an IPv6 route add could result in 
decrementing the IPv4 address pool, which is an unexpected 
result. 
 
Throughout this paper we use examples of Linux kernel 
networking functions offloaded to a switching ASIC. The 
main network function used to explain the problems and 
solutions is L3 routing. However, the same principles and 
problems apply for other network functions as well as other 
devices such as NICs. 
 
The first three sections provide background information on 
switch ASIC pipelines, Linux kernel hardware acceleration 
and the current approaches to manage resources in the 
kernel. We then describe possible resource managers design 
to improve user feedback and avoid unhandled resource 
overload. 
 

Switch ASIC Pipeline Resources 
Switch ASICs have different pipelines and resources, 
however main components can be abstracted as shown on 
Figure 2 and Figure 3 (showing respectively a packet’s 
ingress and egress pipelines). 
 
We discuss first the ingress path (Figure 2) with a focus on 
hardware resources used: 
 
• Port ACLs (2): filtering of packets before forwarding, 
based on source port and VLAN; ACLs usually stored in 
TCAM. 
• MAC Address Table (3): exact-match table for (VLAN, 
destination MAC) tuples. It decides if a packet must be 
routed or bridged. In case of bridging, the table contains the 
egress physical port; usually stored in hash-based memory. 
Packets that match the “router MAC” are deemed to be 
routed. 

• Host Routes Table (4): Exact match for (VRF, IP) tuples. 
Given a destination IP address, it provides the directly 
connected port and next-hops which are /32 routes (or /128 
for IPv6); usually stored in TCAM or hash-based memory. 
• LPM Table (4): Longest-Prefix Match on IP addresses 
for (VRF, destination IP). It is used mainly for remote routes 
as well as connected routes that have not been resolved and 
placed in the host table; usually stored in hash-based 
memory on modern silicon implementations. 
• Ingress ACLs (5): filtering of packets after forwarding, 
based on L2/L3/L4 fields; ACLs usually stored in TCAM 
 
After having been buffered and scheduled, a packet goes 
through the egress pipeline, shown in Figure 3. The packet’s 
header is being rewritten with new needed fields, e.g., MAC 
address, VLAN id might be added and egress ACLs are 
applied as egress filtering. Egress ACLs are stored usually 
in TCAM as well. Some ASIC architectures manage all 
different ACLs attach points (port, ingress and egress) 
through the same shared hardware table and thus induce 
tradeoffs on the overall ACL capacity. 
 

 
Shared Hardware Resources 
Switch ASICs resources are often shared between different 
types of objects. For example, the host routes table and 
MAC address table might use the same underlying memory, 
typically implemented with some form of a hash table. The 
entries and keys that use the table are defined in blocks that 
can be resized and thus allow routes versus mac capacity to 
be traded off against each other. Furthermore, different types 
of host route entries and LPM entries exist (e.g., IPv4 
entries, IPv6/64 and IPv6/128 entries) which can also share 
the same memory and be traded off against each other. 
 

Linux Kernel Hardware Acceleration 
This section provides a survey of network function elements 
currently being offloaded to a switchdev driver in the Linux 
kernel. Resources used in the offload are described as well 
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as the current resource management scheme and the impacts 
of hardware resource overload. 

Address Lists offloaded to NIC e-switch 
Unicast and multicast address lists can be offloaded to SR-
IOV enabled NICs, e.g., ixgbe, for filtering and switching in 
hardware. MAC addresses are added through the netdev op 
ndo_fdb_add. Address lists can be directly offloaded to 
hardware without adding to the kernel (kernel bypass via 
NTF_SELF). 
 
Drivers check the hardware limits before programming the 
address to the hardware and returns -ENOMEM when no 
resources are available and fall back to software instead. The 
cpu complexes in systems on which this is deployed  are 
usually capable of handling line rate traffic therefore falling 
back to software is a viable option. 
 
L2 Bridging 
Offloading of FDB and MDB entries enables switching of 
packets at line rate based on destination MAC addresses. If 
learning is done in hardware, hardware learnt entries are 
pushed to kernel FDB. Software learnt or managed FDB 
entries are offloaded to hardware through via switchdev 
notifiers. 
 
In case of failure due to the absence of an FDB/MDB entry, 
hardware or kernel will flood the packet to all ports in the 
broadcast domain and functionality is still preserved. While 
this preserves functionality flooding is suboptimal in a L2 
domain as it takes up unnecessary network bandwidth and 
CPU cycles. 
 
L3 Routing 
Hardware drivers learn of changes to Layer 3 configuration 
via notifiers. For example, when a network interface is 
enslaved to a VRF, a netdev notifier is called or if an address 
is added or removed on a network interface an address 
notifier is called. The driver also uses that notifier to check 
on the fly if any additional hardware resources are needed 
with these interfaces. For example, a RIF might need to be 
allocated in hardware or a virtual router id needs to be 
assigned for a VRF. If the maximum number of such 
resources has been reached, the driver can synchronously 
fail the request and the error is returned to the user. 
 
Similarly, switchdev drivers learn of changes to kernel FIB 
entries (adds, deletes, and modifications) via FIB notifiers. 
Because of the potential overhead in offloading FIB entries, 
the work needed to program the change in hardware is done 
asynchronously from the user request (e.g., via a work 
queue). This means the change is made to the kernel FIB, 
and assuming no errors adding the work to the queue, the 
kernel returns success to the user which can continue with 
more FIB changes. Programming the hardware is done later 
which means if hardware capacity is exceeded there is no 

way to pass an error back to the user. Since the FIB entry 
exists in the kernel but not in hardware, the two forwarding 
paths are now out of sync. One response to such overload 
scenarios is to abort all FIB offloads and fall back to 
software based forwarding. As described earlier this 
situation simply does not always result in acceptable system 
behavior. 
 
ACL Offload 
ACL’s are rules that specify whether traffic matching the 
criteria is forwarded or discarded. In Linux ACL’s can be 
configured via netfilter or tc. An API to offload tc rules to 
hardware is a netdev operation named ndo_setup_tc. Drivers 
implement this netdev operation if they can support tc rule 
offload. In most cases hardware is not capable of offloading 
all ACL rules that software can support. For example, the 
driver can choose to offload flower and u32 classifiers and 
not the many others that tc can support in software. The 
Linux kernel does not fail an acl offload if the hardware does 
not support the ACL today. For a switch ASIC this means, 
on an ACL offload failure, the ACL is active only on the 
packets punted to the CPU and not on the packets forwarded 
in hardware resulting in inconsistent and unpredictable ACL 
enforcement. In environments where strict security policies 
are audited and signed off on, this would be a violation. 
 
Offload Policies 
Having seen the previous examples, offload policies in the 
kernel can be generally classified in three different models: 

• Sync Model: hardware and kernel state are kept in sync. 
In case of insufficient hardware resources, fall back entirely 
to software, e.g., routing, ACL’s 
 
• Bypass Model: hardware offload is managed separately 
from the kernel and skips the kernel, e.g., address filters on 
NICs. 
 
• Hybrid Model: Partial offload to hardware either through 
user flags (skip_sw, skip_hw) or when no more hardware 
resources are available, fall back to software for additional 
entries, e.g., ACLs. 

This classification is not consistently respected in the kernel 
and each network function develops its own custom 
resource management. It also sometimes differs between 
drivers for the same function. 

While each of the solutions and approaches works for 
building solutions to specific problems, there is no 
consistent platform expectation that a userspace process can 
have that spans all solutions. 
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Approaches for Resource Management 
Driver Resource Profiles 
Driver resource profiles partition the available memories in 
advance between the different hardware entries. The 
partitioning guarantees a given number of entries (e.g., 50K 
MAC addresses) and is thus conservative: the unused space 
for MAC addresses cannot be used for, e.g., more IPv4 
routes. Moreover, resource overruns are left as an exercise 
for the consumer of those resources and there is no simple 
mechanism that prevents a user space daemon from 
oversubscribing. As we have noted in the earlier sections, 
this can lead to catastrophic and undetectable networking 
failures 
 
Simple accounting for Dedicated Resources 
Resources like RIFs or VRFs have static limits where the 
device has guaranteed support for a specific number of such 
resources. They are more easily tracked for example using 
simple counters and allow for synchronous failures when the 
limit is reached. 
 
Try and Abort for Complex Resources 
FIB entries, MAC entries and next-hops share underlying 
memories and the kernel representation can be different 
from the underlying device representation (e..g, IPv6/64 and 
IPv6/128 addresses use different hardware entries). If driver 
resource profile is not used for these resources (ie., 
guaranteed limits) and with no means for querying current 
resource utilization, userspace has no way to know if FIB 
changes need to be limited. A routing daemon can only push 
the request to the kernel and hope for the best -- that the 
change does not exceed hardware capacity and trigger an 
offload abort. 
 

Problem Definition 
The introduction and background sections motivated the 
need for: 

- a clear offload failure error path to the user or 
protocol daemon; 

- better communication between kernel and 
drivers/hardware to account for resource usage and 
availability. 

- A resource manager model or resource 
management algorithm for drivers. A resource 
manager allows shared memories to be used more 
efficiently and with more flexibility than the strict 
partitioning of resources used in driver profiles. 

 
We discuss in the rest of the paper different models for 
drivers to manage hardware resources. The main goal of 
these models is to fail synchronously to the protocol 
daemons in case of insufficient resources. 
 
Considering the L3 lookup case again, three main loops are 
involved in a typical workflow as shown in Figure 4. Loop 

(1) represents users, e.g., routing protocol daemons, adding 
routes. The kernel checks with the device driver that the 
device still has sufficient resources for a route in Loop (2), 
one route at a time. Resources are only reserved at that point 
as drivers typically defer the actual offload to the device 
through a work queue for latency reasons. Loop (3) 
represents the driver reserving hardware resources through 
communication with the device (PCIe reads/writes). 

 
Loop (1) and (2) are synchronous, (1) representing the batch 
add of routes through rtnetlink while (2) is reserving 
resources needed one route at a time. Loop (3) can take three 
different forms: 
 

1. synchronous, install route synchronously: lockstep 
implementation 

2. synchronous, prefetch resources for future routes: 
synchronous prefetching 

3. asynchronous, prefetch resources for future routes: 
credit-based implementation 

 
The synchronous error flow in case of insufficient resources 
is described in more details below: 
  
Loop (3): If there are not enough hardware resources to 
offload a kernel resource, the device firmware will return a 
driver-specific error to the device driver. Reserving 
resources for an IPv4 route can fail, e.g., because there is no 
more IPv4 prefix entries available on the device. 
Loop (2): Reserving hardware resources for a given offload 
thus fails and the driver returns -EBUSY to the kernel core. 
In the routing case, fib_table_insert cannot reserve needed 
hardware resources on devices and does not install the route 
in the kernel. Routes that have been previously offloaded as 
part of the same rtnetlink batch are removed for consistency. 
Loop (1): Routing daemons receive the errno indicating no 
more resources available on the device. If a batch add fails, 
the entire batch fails and no resources are actually offloaded. 
 
An alternative solution that gets rid of Loop (3) is presented 
as the predictive solution. 
 
Lockstep Implementation 
In the lockstep solution, routes are programmed 
synchronously to the hardware when right after they are 
added to the kernel.  This solution introduces latency (PCIe 
reads/writes to configure resources in the hardware) on the 
control path for installing a route. We measured the latency 
on a Mellanox Spectrum ASIC (SN2100) to be 50-55µs for 
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install of an IPv4 route with a single nexthop. When 
installing many routes, this additional latency increases 
route convergence time, e.g., if a link goes down and routes 
need to be recomputed and added to the kernel and 
hardware. 

In case of offload failure, routes are removed from the kernel 
to keep hardware/kernel states in sync and an error is 
returned synchronously to the user. 

inet_rtm_newroute() // called via rtnetlink 
         fib_table_insert() 
                router_fib4_insert() 
                // program hardware with new route 
               // fail synchronously in case of offload failure 

Listing 1: Lockstep Workflow 

Patch to the spectrum driver used to measure the latency 
when installing a route inline can be found on github [7]. 

 

Synchronous Prefetching 
With synchronous prefetching, the driver reserves N 
hardware route resources in advance. The next (N-1) 
offloads will be able to reserve routes and return 
immediately without any hardware access. Routes are 
installed to hardware asynchronously (route install is 
deferred using a work queue) but the offload will succeed as 
resources have been reserved. 

The critical path of installing a route still incurs the 
additional I/O latency every N routes (worst-case scenario) 
which can still impact route convergence time. Thus, the 
prefetching should be removed from the control path which 
we discuss in the next section. 

inet_rtm_newroute() // called via rtnetlink 
         fib_table_insert() 
                router_fib4_prefetch() 
               // prefetches synchronously new 
               // resources if needed, returns immediately o/w 

Listing 2: Synchronous Prefetching Workflow 
 
Credit-based Solution 
The credit-based solution hides the latency of the 
synchronous solution while still providing an immediate 
feedback to the user. The driver periodically refills, on the 
side, a “bucket” of N route resources. This allows for 
modelling the hardware’s capacity and rate of intake 
accurately which is yet another error that can happen on the 
hardware front. The size of the bucket can be adaptive: 
starting with a bigger bucket size and progressively reducing 
its size as hardware resources decrease. The driver refills the 
bucket asynchronously when it reaches a low threshold such 
that it can always reply synchronously and without any 
involving hardware access to a route add request. 

 

inet_rtm_newroute() // called via rtnetlink 
         fib_table_insert() 
                router_fib4_reserve() 
                // triggers async refill if bucket reaches 
                // low threshold 
 
router_fib4_refill() 
               // refills asynchronously bucket with new 
               // reserved resources 

Listing 3: Credit-based Workflow 

We simulated this implementation (hardware accesses to 
reserve resources are simulated) with the Mellanox 
switchdev driver (mlxsw) to show that the additional latency 
from the lockstep implementation is hidden. The source 
code for the credit-based solution can be found on github 
[8]. 

 

Comparing Lockstep & Credit-based 
We compared the performance of the lockstep 
implementation and the credit-based solution for FIB 
updates using two metrics: coherent control plane latency 
and dataplane latency. We used a Mellanox SN2100 Open 
Ethernet Switch (Spectrum ASIC) with net-next kernel. The 
Spectrum driver was modified to install routes inline 
(lockstep implementation) and alternatively to use a bucket 
refill system to hide the lockstep latency (credit-based 
solution). The experimental setup is shown in Figure 5. 

 
The coherent control plane latency represents the round-trip 
time (from userspace and back to userspace) to install new 
routes in the kernel. It is coherent as it includes the time to 
update hardware tables as well in order for the kernel and 
hardware to be in sync at the end of the updates. 

We measured coherent control plane latency using the Unix 
time command (focusing on system time) when installing 
10,000 routes with ip -batch add. We checked that the results 
are coherent using perf tracepoints measuring hardware 
access latency. For the lockstep implementation, we 
measured the control plane latency to be 600ms, which 
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gives a latency per route of 60us; the credit-based system 
install the 10,000 routes in 480ms, giving a speedup of 1.25. 

We also measure dataplane latency, i.e., time for packets to 
start flowing after 10,000 routes are being installed. We 
measured the worst-case latency, i.e., when the last route 
being installed is the one needed for the packets to start 
being routed. We ran ping with an interval of 0.01s between 
packets and look at the icmp sequence number of the first 
packet successfully transmitted. Route installation is started 
at the same time as the ping command. We measured 
dataplane latency to be 1.10s when installing 10,000 routes 
(110 icmp packets were lost) for the lockstep 
implementation. 

With the credit-based solution, dataplane latency goes down 
to 0.81s (80 icmp packets lost) when installing the same 
10,000 routes. Packets thus start flowing ~1.3x faster when 
using the credit-based solution. 

The results are summarized in Table 1: 

- Users Latency represents the consistent control 
plane latency; 

- HW Latency is the constant latency to access 
hardware when installing a route, hidden in the 
credit-based implementation. 

- Query Latency measures the actual time to query 
hardware, increased by 10x in the experiments (up 
to 350us) to show that the credit-based solution 
would not suffer if querying hardware about 
resources was costly. 

- Data Outage shows the dataplane latency; 

 
The setup for the experiments (including BGP 
configuration) can be found on github [8]. 
 

 
 

Predictive Solution 
The predictive solution computes the current occupancy of 
hardware resources (overestimates if necessary) and 
predicts with a high degree of confidence that an offload will 
succeed. 

 
 

Flat Model: Simple, Hard Limits for Resources 
This solution is equivalent to driver resource profiles: 
simplistic assumptions on capacity and usage for each object 
type are chosen which allow for fast in-line checks of a 
configuration change with a high degree of confidence that 
hardware offload will succeed. This model always works but 
never pushes hardware to full utilization because of the 
simplifying and conservative assumptions. 

Complex Model of Resources and Usage 

With enough details about the hardware, a more complex 
resource usage predictor can be built: kernel resources are 
mapped to their corresponding hardware resources. The 
dependencies between hardware tables and shared 
memories is known by the driver which can then compute 
the current usage and remaining entries given the current 
kernel state. Current kernel accounting/models of resources 
could be modified to better align with typical hardware 
resources and ease the hardware resource accounting. 

Related Work 
The DPIPE interface [5] provides visibility for the user into 
the hardware pipeline and [4] extends this interface to 
provide information about available hardware memories, 
including shared memories and memories’ current usage. [1] 
presented the same issues involved in hardware overload 
and discussed the need for synchronous feedback in case of 
hardware failure. 
 

Future Work 
Feedback from the conference will help confirm and direct 
the work on a resource manager. The credit-based solution 
will be extended and studied in more details to model rate 
mismatches from user down to hardware as well as resource 
representation mismatch. We expect higher speedups with 
the credit-based solution than found in this paper (using a 
workqueue item for the refill thread is not the most 
efficient). 
 
In addition, kernel data structures and representations of 
offloaded data can be improved to better align with 
hardware, for example to simplify accounting. 
 

Conclusion 
Hardware acceleration of network functions offloads kernel 
resources on hardware devices. These kernel resources 
occupy hardware resources and the current expectations in 
case of insufficient hardware resources vary from cases to 
cases. For L3 routing, the expectation is fall back to the 
software implementation but reverting to software can be 
harmful if line rate processing of packets is required for a 
given network infrastructure. Other network functions such 
as ACLs, address lists on NICs and L2 bridging develop 
their own custom solutions for resource overload which 
similarly might not be efficient enough and do not always 
provide synchronous feedback to the user. 
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This paper motivated the need for synchronous feedback to 
the user in case of offload failure in order to avoid incorrect 
or harmful function behaviors. Different models were 
presented to deal with the representation mismatch between 
hardware and kernel resources. A credit-based solution with 
hardware resources prefetching helps managing complex 
resources involved in, e.g., routing, where routing resources 
end up in shared hardware resources and have to be traded 
against other resources. A predictive model is harder to 
engineer if resources are shared and vary greatly between 
devices but can be used in simpler instances. 

Acronyms 
ACL Access Control List 
ASIC Application-Specific Integrated Circuit 
FDB Forwarding Database 
FIB Forwarding Information Base 
IP Internet Protocol 
LPM Longest-Prefix Match 
MAC Media Access Control 
MDB Multicast Group Database 
RIF Router Interface 
TCAM Ternary Content-Addressable Memory 
UFT Unified Forwarding Table 
VRF Virtual Routing and Forwarding 
 

References 
[1] Jiri Pirko, Ido Schimmel, Matty Kadosh, 2016, 
Switchdev BoF, Netdev 1.2 
https://netdevconf.org/1.2/slides/oct5/08_switchdev-
BOF.pdf 
[2] Cisco Nexus 9300-EX Platform Switches Architecture 
https://www.cisco.com/c/en/us/products/collateral/switches
/nexus-9000-series-switches/white-paper-c11-739134.pdf 
[3] Arista 7050X Switch Architecture 
https://people.ucsc.edu/~warner/Bufs/Arista_7050X_Switc
h_Architecture.pdf 
[4 ]Arkadi Sharshevsky, Driver profiles RFC 
https://www.mail-
archive.com/netdev@vger.kernel.org/msg181492.html 
[5] Arkadi Sharshevsky, ASIC Pipeline Debug API 
https://netdevconf.org/2.1/papers/dpipe_netdev_2_1.odt 
[6] Roopa Prabhu, Wilson Kok, Hardware accelerating 
Linux network functions, 
https://people.netfilter.org/pablo/netdev0.1/slides/Hardware
-accelerating-Linux-network-functions.pdf 
[7] Changes to spectrum driver to offload FIB entries inline 
with user request  
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/sync-ipv4-fib 
[8] Changes to spectrum driver to simulate the credit-based 
solution for inline synchronous resource checks. 
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/credit-based-fib 
 
 

[9] Changes to spectrum driver to simulate offload failure 
resulting in blackholed packets 
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/fib-offload-blackhole 
 


