

1

Resource Management for Hardware Accelerated Linux Kernel Network Functions
Andy Roulin, Shrijeet Mukherjee, David Ahern, Roopa Prabhu

Cumulus Networks
{aroulin, shm, dsa, roopa}@cumulusnetworks.com

Abstract

The Linux kernel supports offloading of networking
functions such as bridging and routing to switches (and
NICs). These offloads occupy hardware resources that are
difficult to track for the kernel as their representations can
differ from kernel resources. In addition, hardware resources
must be often traded off against each other if they are stored
in the same shared memory.
Failure to offload a kernel resource, e.g., a routing entry,
installed in the kernel puts the kernel and hardware device
out of sync which can result in incorrect behavior, e.g.,
blackholed packets. Reverting to a software implementation
is not always possible, especially if line rate processing of
packets is a hard requirement of the network environment.
This paper presents the challenges of resource management
involved in network function acceleration. We present
models to manage complex resources offloads where
kernel/hardware representation do not match. Resource
availability is checked synchronously on the offload path to
predict with a high degree of confidence that an offload will
succeed while also providing synchronous feedback to
users, e.g., routing daemons.

Keywords
Linux, ASIC, switch, offload.

Introduction
The Linux kernel supports accelerating network functions
by offloading to hardware. Typically, stateless decisions are
offloaded, and more recently enhancements like FDB
offload, FIB offload and eBPF offload support have been
added. The situation however gets a little more complicated
when offloading functions that affect multiple interfaces and
need to be optimized and managed across these multiple
interfaces. Further complications arise from mismatch in the
view of resources between the kernel and hardware/driver.
When offloaded to hardware, a single kernel resource may
occupy more than one hardware resource: e.g. routing
prefixes which are a complete entry in the kernel might be
stored in TCAM while next-hops could be stored in a hash-
based memory.

One important implementation challenge of hardware
offloading is to keep the kernel state in sync with hardware
when a network function cannot be offloaded due to lack of
hardware resources. Let us consider the L3 routing case and
how hardware offload failures can cause catastrophic
problems. Failure to indicate a hardware offload error to a
routing daemon, will result in the routing daemon
advertising reachability of the failed prefix, which will
result in peer routers sending traffic towards it, which will
then get blackholed. The device driver may try to remedy

the situation by disabling offloading and revert to software
forwarding but this solution is not always practical and can
actually even be harmful if forwarding packets at line rate is
a strict requirement of the network infrastructure. A data
center switch such as the Mellanox Spectrum ASIC can
forward packets at 6.4Tb/s while software forwarding on the
same ASIC delivers around 4Gb/s [1]. With such a mismatch
in speeds many packets will be lost as the CPU cannot
handle line rate traffic.

As said previously, hardware offloading failures can also
result in incorrect route advertisements and potentially
blackholing of traffic. Consider the network topology shown
on Figure 1 with 3 routers and a Switch ASIC (DUT) acting
as an additional router. All routers running BGP. Suppose
the hardware FIB on the switch has a default route, e.g.,
0.0.0.0/0, for packets and a new route, 13.0.0.0/24, is
installed but its offloading fails without notifying the kernel
or the routing daemon (assume no fallback to software
forwarding). Packets for 13.0.0.0/24 will still be forwarded
in hardware but will take the default route instead of the
proper next-hop which will result in incorrect routing and
blackholed packets. Details about this experiment can be
found on github [9].

2

Hardware implementation can differ drastically from the
software implementation both in terms of processing and
resource management. For example, IPv6/64 and IPv6/128
prefixes (routes with a /64 mask versus a /128 mask)
typically use different hardware entries while the kernel
does not distinguish between them. Hardware representation
mismatches make it harder for the kernel to keep a precise
and simple accounting of hardware resource occupancy.
This is further complicated as different kernel resources can
be mapped to the same shared hardware resources: e.g., if
both routes and neighbor entries use the same shared
memory on a device then adding more routes can decrease
the number of available neighbor entries. This leads to
problems where an IPv6 route add could result in
decrementing the IPv4 address pool, which is an unexpected
result.

Throughout this paper we use examples of Linux kernel
networking functions offloaded to a switching ASIC. The
main network function used to explain the problems and
solutions is L3 routing. However, the same principles and
problems apply for other network functions as well as other
devices such as NICs.

The first three sections provide background information on
switch ASIC pipelines, Linux kernel hardware acceleration
and the current approaches to manage resources in the
kernel. We then describe possible resource managers design
to improve user feedback and avoid unhandled resource
overload.

Switch ASIC Pipeline Resources
Switch ASICs have different pipelines and resources,
however main components can be abstracted as shown on
Figure 2 and Figure 3 (showing respectively a packet’s
ingress and egress pipelines).

We discuss first the ingress path (Figure 2) with a focus on
hardware resources used:

• Port ACLs (2): filtering of packets before forwarding,
based on source port and VLAN; ACLs usually stored in
TCAM.
• MAC Address Table (3): exact-match table for (VLAN,
destination MAC) tuples. It decides if a packet must be
routed or bridged. In case of bridging, the table contains the
egress physical port; usually stored in hash-based memory.
Packets that match the “router MAC” are deemed to be
routed.

• Host Routes Table (4): Exact match for (VRF, IP) tuples.
Given a destination IP address, it provides the directly
connected port and next-hops which are /32 routes (or /128
for IPv6); usually stored in TCAM or hash-based memory.
• LPM Table (4): Longest-Prefix Match on IP addresses
for (VRF, destination IP). It is used mainly for remote routes
as well as connected routes that have not been resolved and
placed in the host table; usually stored in hash-based
memory on modern silicon implementations.
• Ingress ACLs (5): filtering of packets after forwarding,
based on L2/L3/L4 fields; ACLs usually stored in TCAM

After having been buffered and scheduled, a packet goes
through the egress pipeline, shown in Figure 3. The packet’s
header is being rewritten with new needed fields, e.g., MAC
address, VLAN id might be added and egress ACLs are
applied as egress filtering. Egress ACLs are stored usually
in TCAM as well. Some ASIC architectures manage all
different ACLs attach points (port, ingress and egress)
through the same shared hardware table and thus induce
tradeoffs on the overall ACL capacity.

Shared Hardware Resources
Switch ASICs resources are often shared between different
types of objects. For example, the host routes table and
MAC address table might use the same underlying memory,
typically implemented with some form of a hash table. The
entries and keys that use the table are defined in blocks that
can be resized and thus allow routes versus mac capacity to
be traded off against each other. Furthermore, different types
of host route entries and LPM entries exist (e.g., IPv4
entries, IPv6/64 and IPv6/128 entries) which can also share
the same memory and be traded off against each other.

Linux Kernel Hardware Acceleration
This section provides a survey of network function elements
currently being offloaded to a switchdev driver in the Linux
kernel. Resources used in the offload are described as well

3

as the current resource management scheme and the impacts
of hardware resource overload.

Address Lists offloaded to NIC e-switch
Unicast and multicast address lists can be offloaded to SR-
IOV enabled NICs, e.g., ixgbe, for filtering and switching in
hardware. MAC addresses are added through the netdev op
ndo_fdb_add. Address lists can be directly offloaded to
hardware without adding to the kernel (kernel bypass via
NTF_SELF).

Drivers check the hardware limits before programming the
address to the hardware and returns -ENOMEM when no
resources are available and fall back to software instead. The
cpu complexes in systems on which this is deployed are
usually capable of handling line rate traffic therefore falling
back to software is a viable option.

L2 Bridging
Offloading of FDB and MDB entries enables switching of
packets at line rate based on destination MAC addresses. If
learning is done in hardware, hardware learnt entries are
pushed to kernel FDB. Software learnt or managed FDB
entries are offloaded to hardware through via switchdev
notifiers.

In case of failure due to the absence of an FDB/MDB entry,
hardware or kernel will flood the packet to all ports in the
broadcast domain and functionality is still preserved. While
this preserves functionality flooding is suboptimal in a L2
domain as it takes up unnecessary network bandwidth and
CPU cycles.

L3 Routing
Hardware drivers learn of changes to Layer 3 configuration
via notifiers. For example, when a network interface is
enslaved to a VRF, a netdev notifier is called or if an address
is added or removed on a network interface an address
notifier is called. The driver also uses that notifier to check
on the fly if any additional hardware resources are needed
with these interfaces. For example, a RIF might need to be
allocated in hardware or a virtual router id needs to be
assigned for a VRF. If the maximum number of such
resources has been reached, the driver can synchronously
fail the request and the error is returned to the user.

Similarly, switchdev drivers learn of changes to kernel FIB
entries (adds, deletes, and modifications) via FIB notifiers.
Because of the potential overhead in offloading FIB entries,
the work needed to program the change in hardware is done
asynchronously from the user request (e.g., via a work
queue). This means the change is made to the kernel FIB,
and assuming no errors adding the work to the queue, the
kernel returns success to the user which can continue with
more FIB changes. Programming the hardware is done later
which means if hardware capacity is exceeded there is no

way to pass an error back to the user. Since the FIB entry
exists in the kernel but not in hardware, the two forwarding
paths are now out of sync. One response to such overload
scenarios is to abort all FIB offloads and fall back to
software based forwarding. As described earlier this
situation simply does not always result in acceptable system
behavior.

ACL Offload
ACL’s are rules that specify whether traffic matching the
criteria is forwarded or discarded. In Linux ACL’s can be
configured via netfilter or tc. An API to offload tc rules to
hardware is a netdev operation named ndo_setup_tc. Drivers
implement this netdev operation if they can support tc rule
offload. In most cases hardware is not capable of offloading
all ACL rules that software can support. For example, the
driver can choose to offload flower and u32 classifiers and
not the many others that tc can support in software. The
Linux kernel does not fail an acl offload if the hardware does
not support the ACL today. For a switch ASIC this means,
on an ACL offload failure, the ACL is active only on the
packets punted to the CPU and not on the packets forwarded
in hardware resulting in inconsistent and unpredictable ACL
enforcement. In environments where strict security policies
are audited and signed off on, this would be a violation.

Offload Policies
Having seen the previous examples, offload policies in the
kernel can be generally classified in three different models:

• Sync Model: hardware and kernel state are kept in sync.
In case of insufficient hardware resources, fall back entirely
to software, e.g., routing, ACL’s

• Bypass Model: hardware offload is managed separately
from the kernel and skips the kernel, e.g., address filters on
NICs.

• Hybrid Model: Partial offload to hardware either through
user flags (skip_sw, skip_hw) or when no more hardware
resources are available, fall back to software for additional
entries, e.g., ACLs.

This classification is not consistently respected in the kernel
and each network function develops its own custom
resource management. It also sometimes differs between
drivers for the same function.

While each of the solutions and approaches works for
building solutions to specific problems, there is no
consistent platform expectation that a userspace process can
have that spans all solutions.

4

Approaches for Resource Management
Driver Resource Profiles
Driver resource profiles partition the available memories in
advance between the different hardware entries. The
partitioning guarantees a given number of entries (e.g., 50K
MAC addresses) and is thus conservative: the unused space
for MAC addresses cannot be used for, e.g., more IPv4
routes. Moreover, resource overruns are left as an exercise
for the consumer of those resources and there is no simple
mechanism that prevents a user space daemon from
oversubscribing. As we have noted in the earlier sections,
this can lead to catastrophic and undetectable networking
failures

Simple accounting for Dedicated Resources
Resources like RIFs or VRFs have static limits where the
device has guaranteed support for a specific number of such
resources. They are more easily tracked for example using
simple counters and allow for synchronous failures when the
limit is reached.

Try and Abort for Complex Resources
FIB entries, MAC entries and next-hops share underlying
memories and the kernel representation can be different
from the underlying device representation (e..g, IPv6/64 and
IPv6/128 addresses use different hardware entries). If driver
resource profile is not used for these resources (ie.,
guaranteed limits) and with no means for querying current
resource utilization, userspace has no way to know if FIB
changes need to be limited. A routing daemon can only push
the request to the kernel and hope for the best -- that the
change does not exceed hardware capacity and trigger an
offload abort.

Problem Definition
The introduction and background sections motivated the
need for:

- a clear offload failure error path to the user or
protocol daemon;

- better communication between kernel and
drivers/hardware to account for resource usage and
availability.

- A resource manager model or resource
management algorithm for drivers. A resource
manager allows shared memories to be used more
efficiently and with more flexibility than the strict
partitioning of resources used in driver profiles.

We discuss in the rest of the paper different models for
drivers to manage hardware resources. The main goal of
these models is to fail synchronously to the protocol
daemons in case of insufficient resources.

Considering the L3 lookup case again, three main loops are
involved in a typical workflow as shown in Figure 4. Loop

(1) represents users, e.g., routing protocol daemons, adding
routes. The kernel checks with the device driver that the
device still has sufficient resources for a route in Loop (2),
one route at a time. Resources are only reserved at that point
as drivers typically defer the actual offload to the device
through a work queue for latency reasons. Loop (3)
represents the driver reserving hardware resources through
communication with the device (PCIe reads/writes).

Loop (1) and (2) are synchronous, (1) representing the batch
add of routes through rtnetlink while (2) is reserving
resources needed one route at a time. Loop (3) can take three
different forms:

1. synchronous, install route synchronously: lockstep
implementation

2. synchronous, prefetch resources for future routes:
synchronous prefetching

3. asynchronous, prefetch resources for future routes:
credit-based implementation

The synchronous error flow in case of insufficient resources
is described in more details below:

Loop (3): If there are not enough hardware resources to
offload a kernel resource, the device firmware will return a
driver-specific error to the device driver. Reserving
resources for an IPv4 route can fail, e.g., because there is no
more IPv4 prefix entries available on the device.
Loop (2): Reserving hardware resources for a given offload
thus fails and the driver returns -EBUSY to the kernel core.
In the routing case, fib_table_insert cannot reserve needed
hardware resources on devices and does not install the route
in the kernel. Routes that have been previously offloaded as
part of the same rtnetlink batch are removed for consistency.
Loop (1): Routing daemons receive the errno indicating no
more resources available on the device. If a batch add fails,
the entire batch fails and no resources are actually offloaded.

An alternative solution that gets rid of Loop (3) is presented
as the predictive solution.

Lockstep Implementation
In the lockstep solution, routes are programmed
synchronously to the hardware when right after they are
added to the kernel. This solution introduces latency (PCIe
reads/writes to configure resources in the hardware) on the
control path for installing a route. We measured the latency
on a Mellanox Spectrum ASIC (SN2100) to be 50-55µs for

5

install of an IPv4 route with a single nexthop. When
installing many routes, this additional latency increases
route convergence time, e.g., if a link goes down and routes
need to be recomputed and added to the kernel and
hardware.

In case of offload failure, routes are removed from the kernel
to keep hardware/kernel states in sync and an error is
returned synchronously to the user.

inet_rtm_newroute() // called via rtnetlink
 fib_table_insert()
 router_fib4_insert()
 // program hardware with new route
 // fail synchronously in case of offload failure

Listing 1: Lockstep Workflow

Patch to the spectrum driver used to measure the latency
when installing a route inline can be found on github [7].

Synchronous Prefetching
With synchronous prefetching, the driver reserves N
hardware route resources in advance. The next (N-1)
offloads will be able to reserve routes and return
immediately without any hardware access. Routes are
installed to hardware asynchronously (route install is
deferred using a work queue) but the offload will succeed as
resources have been reserved.

The critical path of installing a route still incurs the
additional I/O latency every N routes (worst-case scenario)
which can still impact route convergence time. Thus, the
prefetching should be removed from the control path which
we discuss in the next section.

inet_rtm_newroute() // called via rtnetlink
 fib_table_insert()
 router_fib4_prefetch()
 // prefetches synchronously new
 // resources if needed, returns immediately o/w

Listing 2: Synchronous Prefetching Workflow

Credit-based Solution
The credit-based solution hides the latency of the
synchronous solution while still providing an immediate
feedback to the user. The driver periodically refills, on the
side, a “bucket” of N route resources. This allows for
modelling the hardware’s capacity and rate of intake
accurately which is yet another error that can happen on the
hardware front. The size of the bucket can be adaptive:
starting with a bigger bucket size and progressively reducing
its size as hardware resources decrease. The driver refills the
bucket asynchronously when it reaches a low threshold such
that it can always reply synchronously and without any
involving hardware access to a route add request.

inet_rtm_newroute() // called via rtnetlink
 fib_table_insert()
 router_fib4_reserve()
 // triggers async refill if bucket reaches
 // low threshold

router_fib4_refill()
 // refills asynchronously bucket with new
 // reserved resources

Listing 3: Credit-based Workflow

We simulated this implementation (hardware accesses to
reserve resources are simulated) with the Mellanox
switchdev driver (mlxsw) to show that the additional latency
from the lockstep implementation is hidden. The source
code for the credit-based solution can be found on github
[8].

Comparing Lockstep & Credit-based
We compared the performance of the lockstep
implementation and the credit-based solution for FIB
updates using two metrics: coherent control plane latency
and dataplane latency. We used a Mellanox SN2100 Open
Ethernet Switch (Spectrum ASIC) with net-next kernel. The
Spectrum driver was modified to install routes inline
(lockstep implementation) and alternatively to use a bucket
refill system to hide the lockstep latency (credit-based
solution). The experimental setup is shown in Figure 5.

The coherent control plane latency represents the round-trip
time (from userspace and back to userspace) to install new
routes in the kernel. It is coherent as it includes the time to
update hardware tables as well in order for the kernel and
hardware to be in sync at the end of the updates.

We measured coherent control plane latency using the Unix
time command (focusing on system time) when installing
10,000 routes with ip -batch add. We checked that the results
are coherent using perf tracepoints measuring hardware
access latency. For the lockstep implementation, we
measured the control plane latency to be 600ms, which

6

gives a latency per route of 60us; the credit-based system
install the 10,000 routes in 480ms, giving a speedup of 1.25.

We also measure dataplane latency, i.e., time for packets to
start flowing after 10,000 routes are being installed. We
measured the worst-case latency, i.e., when the last route
being installed is the one needed for the packets to start
being routed. We ran ping with an interval of 0.01s between
packets and look at the icmp sequence number of the first
packet successfully transmitted. Route installation is started
at the same time as the ping command. We measured
dataplane latency to be 1.10s when installing 10,000 routes
(110 icmp packets were lost) for the lockstep
implementation.

With the credit-based solution, dataplane latency goes down
to 0.81s (80 icmp packets lost) when installing the same
10,000 routes. Packets thus start flowing ~1.3x faster when
using the credit-based solution.

The results are summarized in Table 1:

- Users Latency represents the consistent control
plane latency;

- HW Latency is the constant latency to access
hardware when installing a route, hidden in the
credit-based implementation.

- Query Latency measures the actual time to query
hardware, increased by 10x in the experiments (up
to 350us) to show that the credit-based solution
would not suffer if querying hardware about
resources was costly.

- Data Outage shows the dataplane latency;

The setup for the experiments (including BGP
configuration) can be found on github [8].

Predictive Solution
The predictive solution computes the current occupancy of
hardware resources (overestimates if necessary) and
predicts with a high degree of confidence that an offload will
succeed.

Flat Model: Simple, Hard Limits for Resources
This solution is equivalent to driver resource profiles:
simplistic assumptions on capacity and usage for each object
type are chosen which allow for fast in-line checks of a
configuration change with a high degree of confidence that
hardware offload will succeed. This model always works but
never pushes hardware to full utilization because of the
simplifying and conservative assumptions.

Complex Model of Resources and Usage

With enough details about the hardware, a more complex
resource usage predictor can be built: kernel resources are
mapped to their corresponding hardware resources. The
dependencies between hardware tables and shared
memories is known by the driver which can then compute
the current usage and remaining entries given the current
kernel state. Current kernel accounting/models of resources
could be modified to better align with typical hardware
resources and ease the hardware resource accounting.

Related Work
The DPIPE interface [5] provides visibility for the user into
the hardware pipeline and [4] extends this interface to
provide information about available hardware memories,
including shared memories and memories’ current usage. [1]
presented the same issues involved in hardware overload
and discussed the need for synchronous feedback in case of
hardware failure.

Future Work
Feedback from the conference will help confirm and direct
the work on a resource manager. The credit-based solution
will be extended and studied in more details to model rate
mismatches from user down to hardware as well as resource
representation mismatch. We expect higher speedups with
the credit-based solution than found in this paper (using a
workqueue item for the refill thread is not the most
efficient).

In addition, kernel data structures and representations of
offloaded data can be improved to better align with
hardware, for example to simplify accounting.

Conclusion
Hardware acceleration of network functions offloads kernel
resources on hardware devices. These kernel resources
occupy hardware resources and the current expectations in
case of insufficient hardware resources vary from cases to
cases. For L3 routing, the expectation is fall back to the
software implementation but reverting to software can be
harmful if line rate processing of packets is required for a
given network infrastructure. Other network functions such
as ACLs, address lists on NICs and L2 bridging develop
their own custom solutions for resource overload which
similarly might not be efficient enough and do not always
provide synchronous feedback to the user.

7

This paper motivated the need for synchronous feedback to
the user in case of offload failure in order to avoid incorrect
or harmful function behaviors. Different models were
presented to deal with the representation mismatch between
hardware and kernel resources. A credit-based solution with
hardware resources prefetching helps managing complex
resources involved in, e.g., routing, where routing resources
end up in shared hardware resources and have to be traded
against other resources. A predictive model is harder to
engineer if resources are shared and vary greatly between
devices but can be used in simpler instances.

Acronyms
ACL Access Control List
ASIC Application-Specific Integrated Circuit
FDB Forwarding Database
FIB Forwarding Information Base
IP Internet Protocol
LPM Longest-Prefix Match
MAC Media Access Control
MDB Multicast Group Database
RIF Router Interface
TCAM Ternary Content-Addressable Memory
UFT Unified Forwarding Table
VRF Virtual Routing and Forwarding

References
[1] Jiri Pirko, Ido Schimmel, Matty Kadosh, 2016,
Switchdev BoF, Netdev 1.2
https://netdevconf.org/1.2/slides/oct5/08_switchdev-
BOF.pdf
[2] Cisco Nexus 9300-EX Platform Switches Architecture
https://www.cisco.com/c/en/us/products/collateral/switches
/nexus-9000-series-switches/white-paper-c11-739134.pdf
[3] Arista 7050X Switch Architecture
https://people.ucsc.edu/~warner/Bufs/Arista_7050X_Switc
h_Architecture.pdf
[4]Arkadi Sharshevsky, Driver profiles RFC
https://www.mail-
archive.com/netdev@vger.kernel.org/msg181492.html
[5] Arkadi Sharshevsky, ASIC Pipeline Debug API
https://netdevconf.org/2.1/papers/dpipe_netdev_2_1.odt
[6] Roopa Prabhu, Wilson Kok, Hardware accelerating
Linux network functions,
https://people.netfilter.org/pablo/netdev0.1/slides/Hardware
-accelerating-Linux-network-functions.pdf
[7] Changes to spectrum driver to offload FIB entries inline
with user request
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/sync-ipv4-fib
[8] Changes to spectrum driver to simulate the credit-based
solution for inline synchronous resource checks.
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/credit-based-fib

[9] Changes to spectrum driver to simulate offload failure
resulting in blackholed packets
https://github.com/CumulusNetworks/net-next/tree/res-
mgmt/fib-offload-blackhole

