

Netfilter updates since last NetDev
NetDev 2.2, Seoul, Korea (Nov 2017)

<pablo@netfilter.org>
Pablo Neira Ayuso

What does this cover?

● Not a tutorial…
– Incremental updates already upstream

– Ongoing development efforts

– Highlights of the NFWS’17 in Faro, Portugal

– A bit of performance numbers

What does this cover? (2)

● For those that are new to nftables...
– nftables replaces for {ip,ip6,eb,arp}tables

– It’s well documented:
● https://wiki.nftables.org
● man nft(8)

– nftables 0.8 release (Oct 13th,2017)
● 306 commits since last release
● 26 unique contributors

https://wiki.nftables.org/

nftables performance numbers

● Dropping packets, with 4.14.0-rc+patch
● iptables from prerouting/raw:

– iptables -I PREROUTING -t raw -p udp –dport 9 -j DROP

5999928pps 2879Mb/sec

● nftables from ingress (x2 faster):
– nft add rule netdev ingress udp dport 9 drop

12356983pps 5931Mb/sec

– nft add rule netdev ingress udp dport { 1, 2, …, 384} drop

11844615pps 5685Mb/sec

Faster nftables sets: Overview

● Selects backend based on description
– Number of elements (if known)

– Key length

– Intervals

● Sets come with big O notation to indicate scalability
– lookup

– space

● User doesn't need to know need to learn about datastructures and
play tuning games

● Two policies:
– Performance, select the faster implementation (default behaviour)

– Memory, selects the one that consumes less memory

Faster nftables sets: Overview (2)

● Existing set backend implementations
– Hashtable

● Two variants: fixed size and resizable
● With timeout implementation.

– Bitmap, up to 16 bit keys
● 64 bytes for 8 bits.
● 16 Kbytes for 16 bits.

– Rbtree, for intervals

● Performance evaluation from nft ingress
– one rule with anonymous, default policy drop

Faster nf_tables sets: hashtable

● Resizable hashtable
– With timeout support

– 11076337pps, 5316Mb/sec

● Fixed size hashtable (just 150 more LOC)
– Selected if userspace indicates size:

● Used for anonymous sets
● User specifies 'size' statement in set definition

– No timeout support, but could be done

– 16-bit or 32-bit key: 13109944pps 6292Mb/sec

– Generic: 12670233pps 6081Mb/sec

Faster nf_tables sets: bitmap

● Keeps a list of existing dummy objects
– Keeps element comments, only used for dumping
– Increases memory consumption
– May add timeouts

● From lookup path, uses bitmap representation
– Two bits to represent current and next/previous generation

● 16-bit key: 16755207pps 8042Mb/sec
● Selected from keys <= 16 bits

– If default policy is performance

Faster nf_tables sets: rbtree

● For ranges
– No timeout support yet

● Lockless fast path
● With 3 ranges: 9952520pps 4777Mb/sec
● With 12 ranges: 9130579pps 4382Mb/sec

nftables updates

● fib expression from netdev for early reverse path filter
and RTBH (Pablo M. Bermudo)

nft add rule netdev filter ingress \
 fib saddr . iif oif missing drop

nft add rule netdev filter ingress meta mark set 0xdead \
 fib daddr . mark type vmap { \

 blackhole : drop, \
 prohibit : jump prohibited, \
 unreachable : drop }

● TCP options and route path mtu (Florian Westphal)

nft add rule inet mangle forward \
tcp option maxseg set rt mss

nftables updates (2)

● Rise nf_tables objects name size up to 255 chars for
DNS names as per RFC1035 (Phil Sutter)

nft add set filter server1.pool.badguy.com { \
 type ipv4_addr\; }

● Display generation ID and process (Phil Sutter)

nft monitor
add table netdev test
add chain netdev test test { \

type filter hook ingress priority 0; policy accept; }
add rule netdev test test udp dport 9
new generation 18 by process 22900 (nft)

nftables updates (3)

● Limit stateful object (Pablo M. Bermudo)
nft add limit filter lim1 rate 512 kbytes/second
nft add limit filter lim2 rate 1024 kbytes/second \

burst 512 bytes
nft add rule filter prerouting \

limit name tcp dport map {
443 : "lim1", \
 80 : "lim2", \
 22 : "lim1"}

– No rate limit update command yet.

● Add NLM_F_NONREC to netlink: Bail out if user requests
non-recursive deletion for tables and sets.

nftables updates (4)

● Dry run mode (Pablo M. Bermudo)

nft --check add rule x y ip protocol vmap { \
 tcp : jump tcp_chain, \
 udp : jump udp_chain }

nft –check add element x z { 192.168.2.1 }
● Wildcards to include files from scripts (Ismo Puustinen):

Include "/etc/ruleset/*.nft
● --echo option (Phil Sutter):

nft --echo --handle add rule ip x y \
 tcp dport {22, 80} accept
add rule ip t c tcp dport { ssh, http } accept # handle 2

ferm ideas for nftables

● ferm is around since 2001:
– http://ferm.foo-projects.org

– People seem to ♥ this…

– nftables syntax is clearly inspired by this: Expands to iptables commands.

● Features we can add from there:
– Define variable from command line call:

ferm --def '$name=value' …

– Test the rules without fearing to lock yourself out.

--interactive … --timeout

– External command invocations
@def $DNSSERVERS = `grep nameserver /etc/resolv.conf | awk '{print $2}'`;
chain INPUT proto tcp saddr $DNSSERVER ACCEPT;

libnftables: high level library

● Joint work by Eric Leblond and Phil Sutter.
● Simple API, for those in the rush.

nft = nft_ctx_new(NFT_CTX_DEFAULT);

nft_run_cmd_from_buffer(nft, cmd, sizeof(cmd));

nft_ctx_free(nft);

● Still to be done:
– Allow to select output to display errors.

– Batch commands.

● More advanced API to control Netlink IO.

Conntrack updates

● Mostly work done by Florian Westphal.
● Speed up netns removal by selective calls of synchronize_net()
● Speed up conntrack by simplifying ct extension infrastructure:

No expensive runtime time calculation of extension area.
● Reduce memory footprint by using smaller arrays.
● Conntrack hooks registered once there’s rule using -m state.
● Allow to get rid of unassured flows under stress for DCCP,

SCTP and TCP protocols.
● No more fake conntrack object for notracking: better cache

efficiency.
● Conntrack hashtable resizing bugfixes (Liping Zhang)

Flow offload infrastructure

● Idea: Add generic software flow table from
netfilter ingress hook.
– For each packet, extract tuple and look up at the

flow table.
● Miss: Let the packet follow the classic forwarding path.
● Hit: Packet is pushed out to the destination and interface.

– NAT mangling, if any.
– Decrement TTL.
– Send packet via neigh_xmit(...).

● Expire flows if we see no more packets.

Flow offload infrastructure (2)

● Add entry to software flow table from conntrack object in established
state.

● Configure flow offload through rule:

table ip x {
chain y {

 type filter hook forward priority 0;
 ip protocol tcp flow offload counter

}
}

● Print flows that are offloaded:
cat /proc/net/nf_conntrack
ipv4 2 tcp 6 src=10.141.10.2 dst=147.75.205.195 sport=36392
dport=443 src=147.75.205.195 dst=192.168.2.195 sport=443
dport=36392 [OFFLOAD] mark=0 zone=0 use=2

Flow offload infrastructure (3)

● Flow offload forward PoC in software is ~2.75
faster:
– Baseline: classic forwarding path.

1848888pps 887Mb/sec (887466240bps)

– Flow offload forwarding:
5155382pps 2474Mb/sec (2474583360bps)

Flow offload infrastructure (4)

● Switches come with built-in flow table and smartnics
implement this.

● Observing out of tree patches to support hardware flow table
from Netfilter in OpenWRT.

● Flow table configuration usually need to hold mdio mutex:
– Queue configuration to kernel thread.

– Few packets follow the software flow table until configuration is done.

● Pass struct flow_offload as parameter to ndo:
– int (*ndo_flow_add)(struct flow_offload *flow);
– int (*ndo_flow_del)(struct flow_offload *flow);

Netfilter updates since last NetDev
NetDev 2.2, Seoul, Korea (Nov 2017)

Pablo Neira Ayuso
<pablo@netfilter.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

